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SUMMARY 

This report describes the work undertaken in a programme aiming to design, manufacture and test a 

passive load gust alleviation device for use on a sensorcraft structure.  The development of a full scale 

aeroelastic model of a sensorcraft is described along with the aeroelastic scaling approach employed to 

develop a scaled half model that could be tested in a wind tunnel.  Numerical studies demonstrating 

the effectiveness of the gust alleviation device are described.  The design of a wind tunnel model is 

also discussed. A complementary project performing the design, manufacture and static testing of a 

scaled half sensorcraft model is described, however, unfortunately, it was not possible to use this 

structure for wind tunnel testing. 

 

1. INTRODUCTION 

There is much recent interest at the AFRL Air Vehicle Directorate [1-4] in the development of 

unmanned High Altitude Long Endurance (HALE) or Sensorcraft air vehicles that are able to provide 

a 360
o
 sensor coverage whilst maintaining moderate stealth characteristics.  The sensor requirement 

has led to a re-visit of the pioneering work into joined-wing aircraft by Wolkovich [5], Kroo and 

Gallman [6-8] which has been recently surveyed by Livne [9].   

 

Typical proposed joined-wing sensorcraft structural lay-outs are shown in Figure 1 and it can be 

deduced that the aeroelastic behaviour is likely to be very different from conventional aircraft 

configurations. 
 

 

Figure 1.  Examples of Proposed Joined Wing Sensorcraft Aircraft 

 

Much of the work on sensorcraft has been focused upon the optimisation of the aircraft structure, 

aiming fora minimisation in the mass.  The outer wing of the sensor craft design leads to the high 

aspect ratio, which is very favourable for reduction in fuel consumption and range extension. 

However, it produces high bending moments, particularly when encountering manoeuvres or gusts. 

Due to its significant flexibility there have been concerns about: 

 

• the ability to maintain a shape that does not affect the sensor performance 

• the loads that may result from gusts 

• the need to use non-linear static and dynamic aeroelastic analysis in order to account 

 for large geometric deflections.  

 

One of the critical design cases for joined-wing designs is the buckling of the rear wing structure.  

Previous work [2] has shown that non-linear buckling analysis is required in order to estimate 

accurately the deflections and resulting loads that occur.  Linear analysis for buckling under critical 

gusts loads significantly increases the optimized wing structural weight, almost doubling it, and when 

non-linear analysis is used to produce a more accurate analysis through the inclusion of geometric 

nonlinear stiffening effects, the wing tip deflection increases and the optimized wing weight again 

increases significantly. 

  



The use of some form of gust load alleviation system is therefore very desirable, as this should lead to 

a significant reduction in structure, and hence weight, that is required.  One possible solution is the 

design of active load alleviation systems using all of the control surfaces; however, such an approach 

is complex, requiring the avionics for such a system to be carried on the sensorcraft, and a certain 

amount of system redundancy must be included to allow for system failures. 

 
Previous work funded by AFRL through the EOARD [10-11] has investigated the use of a passive 

gust alleviation device for the reduction of loads, and hence structural weight, on a sensorcraft aircraft.  

The objective of this project is to design, manufacture and test (both statically and dynamically) a half 

span wind tunnel model.  This report describes the development of a full scale numerical aeroelastic 

model to provide parameters from which the aeroelastic scaling can be performed, and the scaling 

approach used to determine the dimensions of a scaled half wing tunnel model. A baseline FE model 

was developed to provide the basis for the aeroelastic scaling process and to provide dimensions for 

the manufacture of the wind tunnel model.  A scaled half sensorcraft model was designed, 

manufactured and ground tested, and details of these tests are also described. 

 

2. DEVELOPMENT OF A FULL SIZE AEROELASTIC MODEL 

In order to produce a perfectly scaled aeroelastic model of the sensorcraft, the full scale FE and 

aerodynamic model needs to be made available.  However, for this project such a model was not 

available, and instead the University of Liverpool was supplied with the natural frequencies, mode 

shapes and generalised mass and stiffnesses from a full scale FE model.    

 

This chapter describes how an aeroelastic model of the full size sensorcraft model has been developed 

by adding panel method aerodynamics to supplied modal data and planform.  The model was then 

used to obtain static and dynamic aeroelastic behaviour of the full-scale model which can then be 

employed in the scaling process. 

 
2.1 Supplied Data 

The aeroelastic sensorcraft model was built using the ZAERO package based on the data supplied in 

“Boeing_410E4- 21r2_Mode_Shapes_Reduced_Set_v04Bond.doc”.  Mode shape data, grid point 

location (101 points), inertia, generalised mass and stiffness data are used to create a modal model as 

input to the software package.  

 

2.2 Aeroelastic Modelling 

Given the standard aeroelastic equation in physical space y 
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where A and E are the mass and stiffness matrices respectively, q is the dynamic pressure and Q is the 

aerodynamic force matrix. The system can be transformed into modal space p such that  
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where Ap and Ep are the diagonal mass and stiffness matrices respectively. The aerodynamic matrix Q 

is calculated from the DLM code in the ZAERO software. This equation can be used to solve the 

flutter problem. For static aeroelastic analysis the equation simplifies to 
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where p0 is a vector of wind-off deflections, such as angle of attack. 

 

2.3 Structural Modelling 

The mass and stiffness matrices supplied correspond to a set of mass normalised matrices, giving an 

identity matrix for the mass and the stiffness matrix is a diagonal matrix containing the squares of the 

natural frequencies. Table 1 summarises the provided properties. Note that the resulting mode shapes 

are normalised from the true scaled mode shapes ΨΨΨΨ  based on the relationship 

 
1 2/MMMMφ ψφ ψφ ψφ ψ=  (4) 

 

where φφφφ  is the supplied mode shape matrix. 

 

Mode Natural Frequency (Hz) Generalised Mass Generalised Stiffness 

1 0.7677478 1 23.27003 

2 0.8588396 1 29.11950 

3 1.211805 1 57.97290 

4 1.287392 1 65.43068 

5 2.193815 1 190.0027 

6 2.574066 1 261.5768 

7 2.903505 1 332.8166 

8 3.270949 1 422.3839 

9 3.310896 1 432.7638 

10 4.115517 1 668.6649 
Table 1 Supplied data 

 
2.4  Aerodynamic Modelling 

The aerodynamic model has to be generated using a panel method, whose grid covers the planform of 

the (unknown) Finite Element (FE) model. The model is symmetric about the X-Z plane. Considering 

just one half of the model, 5 aerodynamic macro elements were used to describe the entire shape as 

presented in Figure 1. Plan and side views of the complete aerodynamic models are presented in 

Figure 2 and Figure 3. Figure 4 shows the location of the 101 structural grid points in comparison to 

the aerodynamic model. The connection between the front and rear fuselage section has not been 

modelled due to lack of data points in this section to estimate the dimensions accurately.  

 

The aerodynamic forces were calculated over a range of reduced frequencies ranging from 0.02 to 1.5 

at a series of Mach numbers. Infinite plate splines were used to transfer the aerodynamic forces to the 

structure. All non-collinear grid points supplied are used in the splining process, giving 99 usable 

points.  

 

Currently two solution set-ups have been created: 1- Matched Flutter analysis and 2- Static analysis. 

Flutter analysis provides the frequency and damping throughout the flight enveloped. A matched 

solution is used by using the bulk data card FIXHATM. Trim analysis is set-up for a steady-state level 

flight condition at a specified angle of attack. Elastic and rigid deformations are obtained as well as lift 

and induced drag. 

 

The Flutter analysis was performed at an altitude of 19812 metres (65000 ft) covering the Mach 

number range between 0.2 and 0.9. Typical frequency-damping plots are shown in Figure 5. Figure 6 

highlights the damping plot near the flutter crossing. Flutter is estimated to occur at around 155 m/s. 

 

Further modelling improvements can be obtained by: 1- Splining the mode shapes to obtain more grid 

points; 2- Camber effects can be introduced based on the supplied manufacturing drawings although 

these will not affect the panel method aerodynamics. 



 

 
Figure 1 Macro-elements definition 

 
Figure 2 X-Y View 

 
Figure 3 X-Z View 

 
Figure 4 Aerodynamic mesh outline and FE grid 

points location 

 

 
Figure 5 Frequency-Damping Plot at 19812 m 

 
Figure 6 Damping plot at 19812 m - zoomed 

 

 



3. AEROELASTIC SCALING APPROACH 

 
In this chapter, the background to the aeroelastic scaling approach to be used for the design, 

manufacture and test of a sensorcraft aeroelastic model is described. 

3.1 Objectives 

To define a dynamically scaled aeroelastic model that responds identically to a full-scale design with 

respect to chosen scale factors (e.g. geometric scaling, velocity scaling etc). This goal can be achieved 

on the basis of a set of non-dimensional aeroelastic equations. A key requirement is to eliminate the 

reliance of the BAH scaling approach on equivalent beams as in this design case the scaled structure is 

topologically and materially different from the full-scale structure (we don’t know anything about its 

internal structure). 

3.2 Approach 

Based on wind-tunnel parameters, identify the maximum geometry scale and maximum velocity scale. 

For a dynamically scaled test, will also need to identify a third scale (e.g. mass). 

 

• Identify the governing non-dimensional equations of motion (EOM) that will be numerically 

identical for both the scaled and full-scale designs.  The choice of degrees of freedom must 

serve both models.  The common degrees of freedom may be reflected on a global scale with 

modal coordinates or a local scale with influence coefficients interpolated at common points. 

• Start the scaled model design process by defining the flexible structure or the (to be) scaled 

model. This layout could be a lattice of beams (but not necessarily – could be ribs and spars, 

or perhaps an equivalent plate). 

• Size the scaled model structure according to the scaling parameters.  This step depends on the 

form of the governing aeroelastic equations of motion.   

3.3 Non-Dimensionalised Aeroelastic Equations of Motion  

 

In order to achieve a non-dimensional set of equations, we need to select 3 base units of measurement 

for dynamic analysis, typically mass, length and velocity (length / time) although force, length and 

velocity could also be chosen.   For static analysis we only need 2 base units of measurement - force 

and length (the time dependent term is removed). 

 

The following equations assume we have reduced the equations of motion to a minimum of two 

degrees of freedom that represent displacement (length) and rotation (non-dimensional).  These two 

degrees of freedom are consistent with most commercial finite element codes. 

 

Taking a coupled FE / Aerodynamic equations of motion (ignoring structural damping) such that 
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where 

 

X  = Vector of translational degrees of freedom 

θθθθ  = Vector of rotational degrees of freedom 

ij
M  = Block matrix terms in inertia / mass matrix 

ij
K  = Block matrix terms in stiffness matrix 

b  = Reference length (semi-chord) 

ij
Q  = Block matrix Aerodynamic terms (complex for unsteady motions)  

 
In terms of dimensions of the fundamental quantities (M, L, T) equation (5) has the form 
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Thus, according to Newtonian mechanics, we have three base scaling parameters of mass, length and 

time. 

3.4 Base Scaling Parameters 

 

 

Geometric Scaling: Defining the non-dimensional coordinate system ( , )ξ φξ φξ φξ φ  such that 

 

 x b and= ξ θ = φ= ξ θ = φ= ξ θ = φ= ξ θ = φ  (7) 

 

Time Scaling: Using non-dimensional time 
Vt

b
τ =τ =τ =τ = , the base time unit is indirectly scaled in terms of 

a (surrogate) velocity and geometric scale – which reflects the requirement that the scaled model 

operate within the wind tunnel operational limits.  Use the chain rule to non-dimensionalize time 

derivatives that are present in the governing equations of motion. 
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where (.) denotes differentiation w.r.t time and (‘) denotes differentiation w.r.t non-dimensional time.   

 

Mass Scaling: There are a number of options for scaling the mass.  These are discussed below.  Mass 

can be scaled directly (e.g. total mass of the airplane).  Mass can also be scaled in terms of a surrogate 

density scale.  Also, since Force is mass times acceleration, units of force can be used as a derivative 

(or surrogate) scaling parameter for mass.   

 

Equation (2) will be rendered non-dimensional according to the three scaling parameters. 

 

 

 

 

 



3.5 Mass Scaling 

The first approach will consider using some reference mass 
r

m  as part of the scaling process. 

 

Non-Dimensionalised Inertial Force 

 

Defining non-dimensional inertia terms (denoted by the overbar) 
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where 
r

m  is some reference mass (e.g. total mass of the full structure) then the force and moment 

resulting from the mass and inertial terms can be written as 
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where F  and M  are non-dimensional forces and moments respectively. 

 

Non-Dimensionalised Stiffness Force 

 

The process for the stiffness terms follows the same procedure as that shown above for the inertia 

terms, still making use of the same reference mass as before.  Defining 
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then the force and moment resulting from the stiffness terms can be written as 
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Non-Dimensionalised Aeroelastic Equations 

 

Introducing transformations (7) and (8) into equation (5) and pre-multiplying by  
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gives the redefined system equations as 
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Note that the Q matrix now becomes fully non-dimensional. 

 

3.6 Density Scaling 

A second approach will consider using the air density as part of the scaling process 

 

Non-Dimensionalised Inertial Force 

 

Defining non-dimensional inertia terms (denoted by the overbar) 
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where ρρρρ  is the air density and b  is some defined length, then the force and moment resulting from the 

mass and inertial terms can be written as 
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(19) 

 

where F  and M  are non-dimensional forces and moments respectively. 

 

Non-Dimensionalised Stiffness Force 

 

The process for the stiffness terms follows the same procedure as that shown above for the inertia 

terms.  Defining 
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then the force and moment resulting from the stiffness terms can be written as 
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Non-Dimensionalised Aeroelastic Equations 

 

Introducing transformations (17) and (20) and pre-multiplying equation (5) by  
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gives the redefined system equations as 
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 (24) 

 

Again, the Q matrix now becomes fully non-dimensional.  It is arguable that this is a better form to use 

as there is only a length scaling that needs to be changed, however, there are now no longer any 

density or mass terms directly visible in equation (24). 

 



3.7 Use of Modal Transformation 

It is usual to make use of a modal transformation to reduce the size of the equations (matrix 

dimensions m x m, where m = number of physical degrees of freedom) that are being dealt with, 

otherwise system equations (16) and (24) can be very large.  Consider equation (24), then making use 

of the non-dimensional transformation  

 

 
ˆ
ˆ

    
=   

    

ξ ξξ ξξ ξξ ξ
ΨΨΨΨ

φφφφ φφφφ
 (25) 

 

where ΨΨΨΨ  are the first n eigenvectors (columns) of (non-dimensional) matrix 
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and usually n (modes that are considered) << m, then the non-dimensional modal system equations 

become 
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 (27) 

 

with a similar result being found if system equations (16) were considered.   Inertia and stiffness terms 

ˆ ˆ,MKMKMKMK  are diagonal matrices.  The non-dimensional modal coordinates ˆ ˆ,ξ φξ φξ φξ φ  do not relate directly to a 

particular physical coordinate but only via the linear transformation in equation (25).  As the modal 

transformation has been applied to non-dimensional equations, then the modal equations are also non-

dimensional and can therefore be used directly in the scaling process.   

3.8  Scaling of the Aeroelastic Equations 

We have arrived at two different non-dimensional sets of aeroelastic equations (16) and (24).  These 

equations can be used to determine the system behaviour for any combination of fundamental 

quantities 
r

,b,mρρρρ  or ,b,Vρρρρ  respectively using the scaling relationships (9) and (12) or (17) and 

(20) respectively.  If the full size and model structure (physical construction and FE / aerodynamic 

models) are exactly the same, then these scaling relationships determine the scaled model 

characteristics.  The following comments also apply directly to aeroelastic system equations in modal 

coordinates. 

 

However, in practice the model structure is not constructed in the same way as the full size aircraft, 

and the finite element and aerodynamic models will also not be the same therefore the above scaling 

relationships can be used to provide “target” characteristics for the scaled model.  For the rest of this 

section the mass scaling approach will be used but the density scaling approach, or any other, could be 

used as well. 

 

Wind-Off Natural Frequencies and Mode Shapes 

 

The natural frequencies and corresponding mode shapes of the full scale system are obtained from the 

eigensolution of the matrix 
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 (29) 

 

and the natural frequencies have units of rad s
-1

 whereas the mode shapes are non-dimensional.  

 

In terms of the non-dimensionalised equations of motion (taking the mass scaling route), the natural 

frequencies and corresponding mode shapes are obtained from the eigensolution of the matrix 

 

 DΦ = ΦΩΦ = ΦΩΦ = ΦΩΦ = ΦΩ  (30) 

where 
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 (31) 

 
and the natural frequencies now have units of rad τ

-1
.  Unfortunately at zero airspeed the scaling has no 

meaning  and therefore the dynamic analysis must be performed with the inclusion of the velocity 

dependent aerodynamic terms. 

 

Wind-on Natural Frequencies and Mode Shapes 

 

Considering the system when there is some airspeed, the non-dimensionalised frequencies, dampings 

and mode shapes are found from the solution of   
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 (32) 

 

 

Although the structural terms remain the same whatever the scaling, the aerodynamic terms do change 

depending upon the triple (mr, ρ, b).   Remember that the frequencies that are obtained are in non-

dimensional time and thus are scaled by b
V

 (i.e. the term 
bbbb
VVVV

ωωωω
 remains constant) and that the mode 

shapes (a set of non-dimensional ratios) are complex. 

 

Static Aeroelastic Deflections 

 

The static aeroelastic deflections depend upon there being some initial incidence on some parts of the 

lifting surfaces.  In terms of the non-dimensionalised equations (32) we get 
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(33) 

 

where 
0

φφφφ  are a set of initial angles of incidence.  The deflections ,ξ φξ φξ φξ φ  that are found are still 

non-dimensional. 

 

4. Practical Application of Aeroelastic Scaling 

 
In practice, the problem is defined as to find an equivalent aeroelastically scaled model structure given 

the FE and aerodynamic models of a full scale structure at specified flight conditions. Although the 

geometric scaling holds for the planform of the model, the internal structure is likely to be different, 

possibly not even made of the same material or construction technique; similarly, the FE and 

aerodynamic models corresponding to the scaled structure will also be different.  The wind tunnel 

chosen to perform the tests will constrain the dimensions of the model and the speed it is tested at.  

 

The differences between the full scale (subscript s) and model (subscript m - physical and 

computational) mean that it is not possible to simply scale the FE matrices.  Instead comparison must 

be made of quantities such as modal parameters (frequencies and mode shapes), influence coefficients 

and non-dimensionalised deflections.   

 

Here it is proposed to use the following scaled quantities. 

 

4.1  Test Scaling Parameters 

 
There are three scaling values that are defined by the difference in the required design configuration 

(i.e. wind tunnel parameters) and the original flight condition.  Note that the differences in the 

Reynolds number will be ignored and it is assumed that the flow conditions between the full-size and 

scaled conditions have no effect upon the aeroelastic parameters. 

  

Geometric Scaling 
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Velocity Scaling 
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Air Density Scaling 
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nρρρρ
ρ = ρρ = ρρ = ρρ = ρ  (36) 

 

Typically ng, nv > 1 whereas nρ < 1.  Note that the Equivalent Air Speed could be used in order to 

eliminate the need for density information. 

 

Other Scaling Parameters 

 

In order to achieve aeroelastic scaling, there is a need to scale in terms of the stiffness and the mass 

distributions.  For an aircraft model that is simply “shrunk”, or has an internal structure that is exactly 

the same as the full aircraft (as per BAH approach) then this is not a difficult process.  In the case that 



we are considering whereby the internal structure of the scaled model differs from the full size model, 

at least two of the following parameters must be chosen as part of the scaling process. 

 

Reduced Frequencies 

 

Rewriting the aeroelastic equations in non-dimensional form involves the transformation into non-

dimensional time.  The natural frequencies of the full-scale and model structure at the reference test 

conditions must be the same, thus 
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i.e. the reduced frequencies must remain the same.   The reduced frequencies depend upon a correct 

mass and stiffness distribution. 

 

Mode Shapes 

 

The mode shapes corresponding to the various natural frequencies of the full scale and model structure 

must be the same.  These shapes will be complex to some degree depending upon the characteristics of 

the unsteady aerodynamics terms.    As with the reduced frequencies, the mode shapes will depend 

upon obtaining a correct mass and stiffness distribution.   It would be possible to compare the wind-off 

mode shapes for the full-size and scaled models which would eliminate any difficulties associated with 

more shape complexity. 

 

Flutter Speed  

 

The reduced frequency will remain the same for the full-size and scaled models, even at the flutter 

speed.  Consequently it is possible to make a comparison of what the flutter speed should be based 

upon the velocity scaling rule.  However, caution should be made when simply comparing the flutter 

speed as this does not infer that the entire aeroelastic characteristics have been captured. 

 

Static Aeroelastic Deflections  

 

The non-dimensionalised static aeroelastic equations (33) show that equivalent non-dimensionalised 

deflections at the reference test conditions must be the same. e.g. for the wing tip at the reference 

conditions  
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The static aeroelastic deflections will depend upon getting the stiffness distribution correctly.  One 

advantage of comparing the static deflections wind-on is that there an implied scaling of the 

aerodynamic forces which would not occur for the wind-off case.   

 
Flexibility Influence Coefficients 

 

One method to get around the problem of determining the correct scaling of the aerodynamic loads is 

to determine the flexibility influence coefficients for the wind-off case at certain reference points on 

the structure (as per Mark French PhD [12]).  This will give the correct stiffness distribution however, 

it does not take into account the changes in the aerodynamic forces. 

 

 

 



Mass Scaling 

 

The traditional approach for mass scaling is to non-dimensionalise the relationship between some 

reference mass (e.g. total mass) of the aircraft with that of the air.  Typically this can be written as 
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Although this approach is fine for determining the overall mass, there are concerns when this is 

applied to a scaled model when the internal structure differs from the full-scale.  Although the mass 

scaling gives a necessary condition for the scaling, there is no reference to the mass distribution 

(unless implied by having the same internal structure) and consequently it is not a sufficient condition 

for perfect mass scaling.   Note how this term appears in the mass scaling approach described above to 

give equation (16). 

 
4.2 Other Scaling Parameters of Interest 

 

The above schemes are all related to a linear model and relate to what may be thought of as a 

conventional aeroelastic scaling approach. It is possible that several other parameters may have to be 

considered. 

 

Gust Response 

 

Gust velocities will scale in the same way as the airspeed.  In order to achieve an equivalent scaled 

response, the same maximum normalised deflection to the scaled gust (e.q. “1 – cosine”) at certain 

reference points of the structure must be obtained. 
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Non-Linear Static Aeroelastic Deflections  

 

Although the FE model of a non-linear analysis (e.g. the non-linear geometric deflections that occur 

on a sensorcraft) is much more complicated than the linear description shown above, a similar scaling 

approach can be used.  In the same way as for the linear static aeroelastic deflections, the equivalent 

non-dimensionalised non-linear deflections at the reference test conditions must be the same. e.g. for 

the wing tip at the reference conditions  
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and this will enable any non-linear deflection behaviour to be scaled. 

 

Buckling  

 

The critical speed at which buckling (linear or non-linear) will occur simply depends upon the velocity 

scaling 

 

 ( ) ( )buckling v bucklings m
V n V=  (42) 

 

and the critical buckling shape must be the same in a similar way to the mode shapes. 



 

5. Optimisation Approach 

 
An initial baseline scaled model was set up with the correct geometrically scaled planform and flight 

condition.  The model was of such a design to enable efficient manufacture i.e. a simple 2 spar per 

wing design with uniform non-tapered wing section.  (Such an approach was seen as a vast 

improvement upon the structure that was built and tested statically (see later) that was designed purely 

with the aeroelastic scaling as the dominant design driver, with no consideration of the manufacturing 

aspects.)   The aeroelastically scaled model can then be found by determining what sizing of internal 

structure (spars and ribs), skin thickness and (possibly) extra distributed masses is required in order to 

achieve some set of defined non-dimensionalised functions.  A Genetic Algorithm based approach was 

used, however, other evolutionary or hill-climbing optimisation algorithms could be used. 

 

There are a large number of possible target functions that can be chosen from the list above and, as the 

internal structure will not be a shrunk version of the full-scale sensorcraft, it is unlikely that an exact 

match will be obtained for all conditions.  For this initial design study, only the minimum number of 

parameters (one mass and one stiffness condition) required at a single test condition and few modes 

were considered.  The scaled model was aimed to be tested at 30 m/s, a condition that could easily be 

achieved in the ‘9x7’ wind tunnel at the Goldstein Wind Tunnel Laboratory of the University of 

Manchester where it was intended to test the model. 

 

5.1 Baseline Finite Element Sensorcraft Model 

  
A baseline finite element model of a Sensorcraft type aircraft was developed for use in the aeroelastic 

scaling process and eventual manufacture and test of a Sensorcraft wind tunnel model.  The Finite 

Element model was developed in a manner that will be consistent with an efficient manufacturing 

process and consists of two spars along each wing, whose dimensions can be varied along the span, 

attached with ribs whose thickness can be altered as part of the scaling process.  It was constructed in 

order to size the wind tunnel model dimensions for spar, ribs and skin thickness.  

  

5.2  Geometric Scaling 
 
The scaled model will be a factor of 12 smaller than the full scale model (semi-span = 18.285m, length 

= 23.64m) and so the semi-span of the scaled (half) model becomes 1.5237 metres and the overall 

length is 1.97 metres.   

 

5.3 Finite Element Model 
 
A MATLAB code was created in order to define the “deck” used to build the NASTRAN FE model. 

The model consists of the following elements: 

• Skin modelled using shell elements. The airfoil shape is currently based on the NACA0012 

shape, but this can be changed to any other profile. 

• Two plates, modelled as quadrilateral elements, are included to model the front and rear 

fuselage sections. 

• Beam elements are used to model the spars and are located at 25% and 75% chord along the 

span of the model on both front and rear wing sections. 

• The junction area between the two wings is modelled by creating an airfoil decreasing in 

chord length. It was assumed that the beams would pass through the rib at the joining between 

the respective rib and the spars in the front fuselage.   This is the most difficult part of the 

manufacturing process and may require a further change in the future once detailed 

consideration of the manufacturing of the joined wing is considered. 

• The connection between front and rear fuselage section is modelled using beam elements. 



• The model is fully clamped at the front fuselage section, while the rear fuselage section is free 

to move in the Z direction and rotate around the X and Y axes.   

• The material properties assigned to all the elements is aluminium alloy. 

 

There are a number of variable parameters to approximate the FE model, i.e. the number of nodes 

describing the airfoil, the number of beam elements between each rib. Also the number of elements 

describing the fuselage sections and the number of quadrilateral elements describing the skin between 

each rib are all variable.  Initial convergence studies have enabled the correct element density to be 

determined.  The external skin mesh is shown in figure 6 and figures 7-9 show various views of the 

internal structure.   

 

Each rib has its own properties (thickness) that can be assigned via the deck. The fuselage plates, skin 

of the front wing, the skin of the rear and the beams have different (geometric) properties that can also 

be assigned. It is assumed that the shell elements have a uniform thickness throughout each of the 

elements. The beams that make up the spars and also the connection between the front and real 

fuselage are assumed to be rectangular, so that height and width only need to be defined between each 

rib.  Manufacturing and computational considerations are likely to mean that the structure is divided 

into different regions that have the same geometric properties rather than changing the properties of 

every element. 

 
An initial calculation was performed to determine whether the dynamic behaviour looked sensible; the 

following properties were assigned to the various elements: 

• spars height 0.1m 

• spars width 0.03m 

• rib thickness 0.03m 

• skin thickness 0.001m 

• Fuselage section plate thickness 0.1m 

 

and the first four mode shapes are displayed in figures 10-13.  The mode shapes are more or less what 

would be expected although, of course, the structural parameters will need to be changed in order to 

achieve the aeroelastically scaled model, as described above.  Again, it must be stressed that these 

calculations have been performed to get an idea of how the model behaves and are not at this stage 

scaled estimates.  

 



 
Figure 6 XYZ View Full FE model external surface  

Figure 7 XY View internal structure FE model 

 
Figure 8 XZ View internal structure FE model 

 
Figure 9 XYZ View internal structure of FE model 

 
Figure 10 Scaled Sensorcraft model Mode 1 26.4 Hz  

Figure 11 Scaled Sensorcraft model Mode 2 65.5 Hz 



 
Figure 12 Scaled Sensorcraft model Mode 3 200.6 Hz 

 
Figure 13 Scaled Sensorcraft model Mode 4 276.5 Hz 

 

 

 

6. Matching of Wind Tunnel Scale Model to Full size Model of Sensorcraft 
 

The Sensorcraft Model was divided into 4 sections: Front Fuselage (FF); Rear Fuselage (RF), Front 

Wing (FW); Rear Wing (RW) with the following construction: 

• The front fuselage has a solid plate at mid thickness, 8 ribs and skin. 

• The rear fuselage has a solid plate at mid thickness, 8 ribs and skin. 

• The front wing has 2 beams located at 25% and 75% chord, 11 ribs and skin. 

• The rear wing has 2 beams located at 25% and 75% chord, 9 ribs and skin. 

• The beams are of rectangular cross-section and have a constant cross-section throughout 

the span. The maximum height is dictated by the height of the smallest rib. 

 

The variables for the optimization were: 

• FF, RF, FW and RW ribs thickness 

• FF and RF block thickness 

• FF, RF, FW and RW skin thickness 

• FW, RW beams and Fuselage beam section 

 

The objective was to match the first three reduced frequencies (only symmetric modes considered) and 

static displacement at the leading edge front wing tip. Two models were considered initially: one with 

skin and ribs on fuselage section as well and a modified version with no ribs or skin over the fuselage 

section. The cost function utilized was 
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where W is a vector of weighting factors, and κ is a penalty function. M refers to the mass, k to the reduced 

frequency and δ to the static displacement ratio. The penalty function is introduced to force the flutter speed to 

be above the Scale Model flight test speed. Vf is the model flutter speed and VMS is the test flight speed. 

 

The subscript FM refers to the Full Scale Model and SM to the Scaled Model. For the following cases the vector 

W=[0 0.5 0.5]. In table 2, the assigned values to optimisation are listed. Where a number between brackets is 

present, it corresponds to a different value assigned to the modified model. 

 

 



Variable Minimum 

(m) 

Maximum 

(m)  

Divisions (2
n

) Material 

FF skin 0.0001 0.001 3 Nylon 

RF skin 0.0001 0.001 3 Nylon 

FF block 0.0011 0.015 3 Aluminium 

RF block 0.0011 0.015 3 Aluminium 

WF skin 0.0001 0.001 3 Nylon 

WR skin 0.0001 0.001 3 Nylon 

WF beam 25% 

[width height] 

0.0011 0.0011 0.015 0.015 3 Aluminium 

WF beam 75% 

[width height] 

0.0011 0.0011 0.015 0.015 3 Aluminium 

WR beam 25% 

[width height] 

0.0011 0.0011 0.015 0.015 3 (4) Aluminium 

WR beam 75% 

[width height] 

0.0011 0.0011 0.015 0.015 3 (4) Aluminium 

Beam Fuselage 

[width height] 

0.01 0.01 0.03 0.03 3 Aluminium 

Ribs 0.0011 0.015 3 (4) Aluminium 

Table 2.  Assigned Range of Dimensions for the Optimisation Process 

 

 

The parameters in table 3 were utilized for the models, noting that the mass is kept as a free parameter. The 

geometry scaling factor was fixed to 12. 

 

Parameter Full Scale Model Model Scale 

Mass 1.55365E5 lb  

Span 74.9852 ft 1.5237 m 

Airspeed (m/s) 130.41 30 

Mach Number 0.39 0.0882 

Altitude 5000 ft 0 m 

Static Displacement 29.4887 in  

Table 3.  Parameters for Optimisation 

 

Material properties of Nylon and Aluminium were fixed as shown in Table 4. 

 

Material Young’s Modulus (N/m
2
) Poisson’s Ratio Density (kg/m

3
) 

Nylon 3x10
9
 0.42 1100 

Aluminium 72.9x10
9
 0.33 2700 

 

Table 4.   Material Properties 

 

 

 

 



 

 

 

 

 

 

The frequencies of the full scale model at the target airspeed are shown in table 5. 

Mode Frequency (Hz) Mode Frequency (Hz) 

1 0.7881 11 (Sym) 5.9117 

2 (Sym) 1.1307 12 6.0483 

3 (Sym) 1.2371 13 6.3137 

4 1.3665 14 (Sym) 6.5428 

5 2.1782 15 7.7942 

6 (Sym) 2.7110 16 (Sym) 7.7455 

7 2.5988 17 8.2135 

8 (Sym) 3.9146 18 (Sym) 9.4046 

9 4.1680 19 9.7755 

10 (Sym) 4.6459 20 (Sym) 10.1409 

Table 5.  Wind-on Modal Frequencies at Target Airspeed 

 

The static calculations were performed with a 5 degree Angle of Attack. The reference length used to 

calculate the reduced frequency is the span. The optimisation loop was fixed with 33 genes plus 7 new 

genes for each iteration and 50 generations. Figure 14 shows the convergence for the best 7 genes 

throughout the generations whereas in figure 15 the best cost is plotted against the history of the 

elements of the cost function.  

 

Table 6 shows the converged values of the target values for both models. 
 

Parameter Target 

value 

Achieved value  Achieved value 

(Modified Model) 

Reduced Frequency 1 0.19817 0.20686 0.20516 

Reduced Frequency 2 0.21681 0.3494 0.38112 

Reduced Frequency 3 0.47513 0.47543 0.47679 

Static Displacement 

Ratio 

0.0328 0.042208 0.03142 

Mass (kg) 20.88 13.3376 23.755 

Table 6. Optimised Parameter Values 

 

 

Table 7 gives the resulting dimensions of all the elements. 
 

Element Dimension (m) Dimensions (m) (Modified Model) 

FF skin 0.0001 N/A 

RF skin 0.0001 N/A 

FF block 0.0011 0.0186 

RF block 0.0090 0.0300 



WF skin 0.0001 0.0005 

WR skin 0.0001 0.0005 

WF beam 25% 

[width height] 

0.0051 0.0031 0.0048 0.0020 

WF beam 75% 

[width height] 

0.0011 0.0090 0.0011 0.0030 

WR beam 25% 

[width height] 

0.0051 0.0130 0.0030 0.0020 

WR beam 75% 

[width height] 

0.0011 0.0031 0.0011 0.0048 

Beam Fuselage 

[width height] 

0.01 0.01 0.01 0.01 

Ribs FF 0.0090 0.0011 0.0130 0.0150 0.0051 

0.0011 0.0110 0.0031 

N/A 

Ribs RF 0.0071 0.0090 0.0130 0.0051 0.0031 

0.0130 0.0071 0.0051 

N/A 

Ribs FW 0.0130 0.0150 0.0150 0.0130 0.0150 

0.0090 0.0110 0.0011 0.0031 0.0011 

0.0130 

0.0137 0.0112 0.0049 0.0124 

0.0074 0.0036 0.0137 0.0011 0.0150 

0.0175 0.0187 0.0187 

Ribs RW 0.0130 0.0130 0.0150 0.0130 0.0130 

0.0150 0.0110 0.0071 

0.0124 0.0162 0.0162 0.0124 

0.0175 0.0200 0.0187 0.0061 0.0036 

Table 7. Optimised Dimensions 

 

These results are not as good as expected, particularly in mode 2, however it was subsequently found 

that there was an error in one of the root boundary conditions. Much better results have now been 

obtained for the second reduced frequency with this correction in place, with similar results for the 

other parameters.  Little difference was found for the actual internal structural elements for this final 

case. 
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Figure 14. Optimisation evolution 
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Figure 15. Optimisation cost function. Black line – Best cost function. Blue line – 1st reduced 

frequency. Green line – 2nd reduced frequency. Red line – 3rd reduced frequency. Cyan line – Static 

displacement 

 

 

7. Application of Gust Device to Scaled Sensorcraft Model 
 

 

7.1 Original Wing 

 

Firstly, the divergence, flutter and gust behaviour of the scaled wing was investigated to provide a 

baseline for the implementation of the gust device on the sensorcraft.  As it is intended to use the 

model to design a wind-tunnel model and so all aerodynamic analyses was performed using sea-level 

atmospheric conditions and a velocity of 30m/s. 

 

The divergence speed was found to be 80.846m/s, with bending of the forward wing being the critical 

mode whereas flutter occurred at 66.373m/s, with the coalescing frequencies associated with mode 1 

(rear wing plunge and pitch) and mode 2 (first wing bending of both forward and rear wings). 

 

The gust analysis was performed with a freestream velocity of 30m/s and a ‘1-cosine’ gust was used to 

provide a standardised discrete input. Part of the FAA airworthiness regulations, the maximum gust 

that the scaled aircraft should be designed for is 2.957m/s with the specified gust gradient distance (the 



distance required for the gust to build to a peak) being 12.5 mean chord lengths of the aircraft.  Here, 

the chord measurement is 0.27356m. 

 

The maximum (absolute) stress encountered during the response (see figure 16) to the gust (which 

occurs in the rear spar of the forward wing at the root) was found to be 146.361MPa. A peak 

(absolute) twist of the wing at the tip was found to be 1.6805°. The response was also measured at the 

point on the span where the wing would be modified; at this point the maximum (absolute) twist 

encounter was 1.4825° and the maximum (absolute) plunge of the wing (at a point where the wing will 

be modified to attach the device i.e. 86% span) was 0.050316m.  
 

 

Figure 16. Gust Response for Baseline Wing 

 

7.2 Wing with Gust Alleviation Device 

 
The wing was altered to include a gust-alleviation device. This device replaced part of the outboard 

section of the wing (86% - 100% span) and was attached to the rest of the wing via a torsional spring 

close to the leading edge, allowing it to pitch relative to the rest of the wing with an associated 

stiffness (see figure 17). As the main wing pitches up in response to a gust (and by doing so increasing 

aerodynamic loads and resultant stresses), the device rotates about the spring (as the aerodynamic 

centre lies aft of this axis), decreasing its incidence and therefore decreasing aerodynamic loads. 

 

Of interest in this study is the aeroelastic behaviour of the wing when both the stiffness and chordwise 

position of the attachment are varied. Three attachment points that coincide with existing FE nodes of 

the model were considered; x/c = 0.0, x/c = 0.08307 and x/c = 0.1666, with c the local chord length 

and x the chordwise distance from the leading edge (LE). 

 

Figure 18 illustrates the variation of the divergence speed with attachment stiffness for several 

different chordwise positions of attachment. The critical divergence mode was found to be bending of 

the forward wing for stiffnesses approximately greater than 50Nm/rad and pitching of the device as 

well as rear wing bending for stiffnesses below this value.  Any worries that the device itself would 

provide the mechanism for divergence were unfounded. 

 

Although the divergence speed barely alters over the range of stiffnesses considered, the device 

actually improves the divergence behaviour of the wing slightly; this is due the fact that the attachment 

points lies ahead of the aerodynamic centre of the device and so a nose-down moment results, 



decreasing the angle of incidence of the device as the stiffness decreases. The result is reduced 

aerodynamic loads on the wing. Furthermore, the plot shows that in terms of divergence behaviour, the 

closer to the leading edge of the wing the attachment point is, the better; this reflects the greater length 

of the moment arm between the aerodynamic centre and the axis of rotation. The difference in the 

divergence speed at high stiffnesses from the original model (80.846m/s) is most likely due to 

structural modifications to include the device in the FE model. However, the critical modes are 

identical. 

 

Figure 19 illustrates the modified wing’s flutter speed variation with attachment stiffness, for various 

chordwise attachment points. It is clear that the gust alleviation device has a detrimental effect on the 

flutter behaviour of the aircraft; as the stiffness of the device decreases, so too does the flutter speed. 

The significant range of stiffnesses that have a major impact on the flutter speed is between around 5 - 

40 Nm/rad. At the upper end of this range a sharp levelling-off of the flutter speed is observed. This 

effect is caused by a change of modes making the flutter mechanism. Also evident is that the closer the 

attachment point is to the leading edge, the higher the flutter speed becomes. 

 

Figure 17.  Sensorcraft Model With Gust Alleviation Device 
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